
Conservative systems 

This chapter on conservative systems is to a great extent based on reference [Oh] and [Ot]. Systems that are 

not dissipative, no shrinkage in phase space are called conservative systems. They have a conserved quantity. 

In a physical context described by classical mechanics the conserved quantity is energy. The system is isolated 

with no energy flow into and out of the system and no friction. The description of a conservative system in 

classical mechanics is best done in the Hamiltonian formulation. 

Newtonian formulation for a particle with mass 𝑚, coordinates 𝒓 affected by a force 𝑭(𝒓): 

𝑚�̈� = 𝑭(𝒓) 

For a curl-free force with 𝛁 × 𝑭 = 𝟎 the work to move a particle around a loop is zero and it’s possible to 

introduce a potential energy 𝐸𝑝(𝒓) such that 𝑭 = −𝛁𝐸𝑝 and 𝑚�̈� + 𝛁𝐸𝑝 = 0. 

𝒑 ≡ 𝑚�̇�  →  {
𝑚�̇� = 𝒑
   �̇� = −𝛁𝐸𝑝

 with kinetic energy 𝐸𝑘 ≡
𝒑2

2𝑚
 →  

𝜕𝐸𝑘
𝜕𝑝𝑖

=
𝑝𝑖
𝑚
= �̇�𝑖 

Total energy ∶  𝐻 = 𝐸𝑘 + 𝐸𝑝 →

{
 
 

 
 �̇�𝑖 =

𝜕𝐻(𝒓, 𝒑)

𝜕𝑝𝑖

�̇�𝑖 = −
𝜕𝐻(𝒓, 𝒑)

𝜕𝑟𝑖

 

 

The Hamiltonian formulation is a generalization to generalized coordinates 𝑞𝑖, generalized momenta 𝑝𝑖 and 

a scalar Hamiltonian function 𝐻(𝒒, 𝒑, 𝑡) that represents the energy of the system. The general coordinate 𝑞𝑖 

could be an angular variable which would make the momentum variable 𝑝𝑖 an angular momentum. 

{
 
 

 
 𝑑𝑝𝒊
𝑑𝑡
= −

𝜕𝐻(𝒑, 𝒒, 𝑡)

𝜕𝑞𝑖
𝑑𝑞𝑖
𝑑𝑡
=
𝜕𝐻(𝒑, 𝒒, 𝑡)

𝜕𝑝𝑖

 

If the Hamiltonian has no explicit time dependence 𝐻 = 𝐻(𝒑, 𝒒) then: 

𝑑𝐻

𝑑𝑡
=
𝜕𝐻

𝜕𝒒
⋅
𝑑𝒒

𝑑𝑡
+
𝜕𝐻

𝜕𝒑
⋅
𝑑𝒑

𝑑𝑡
=
𝜕𝐻

𝜕𝒒
⋅
𝜕𝐻

𝜕𝒑
+
𝜕𝐻

𝜕𝒑
⋅ (−

𝑑𝐻

𝑑𝒒
) = 0 

As 𝒑 and 𝒒 vary with time 𝐻(𝒑, 𝒒) remains constant. This conserved quantity that is used in the definition of a 

conservative system is the energy 𝐸 of the system. 𝐸 = 𝐻(𝒑, 𝒒) is a constant of motion. 

In the general case 𝑝𝑖 and 𝑞𝑖 are 𝑛-dimensional vectors and the Hamiltonian system is an ODE of first order in 

2𝑛 dimensions. To express this in a unified manner we introduce a new 2𝑛-dimensional vector �̃� = (𝒑, 𝒒) and 

a vector function derived from the scalar Hamiltonian, 𝑭(�̃�, 𝑡) = 𝑺2𝑛 ⋅ 𝜕𝐻/𝜕�̃�  where 𝑺2𝑛 is a 2𝑛 × 2𝑛 matrix 

composed of zero-matrices and identity matrices: 

𝑺2𝑛 = (
𝟎𝑛 −𝑰𝑛
𝑰𝑛 𝟎𝑛

)  
𝜕𝐻

𝜕𝒙
= (
𝜕𝐻/𝜕𝒑
𝜕𝐻/𝜕𝒒

)  →  
Hamiltons′s
equations

 ∶  
𝑑�̃�

𝑑𝑡
= 𝑺2𝑛 ⋅

𝜕𝐻

𝜕�̃�
 

  

An ODE of first order with a unique solution 

once initial conditions 𝒓(0), 𝒑(0) are given. 

These equations are derived under assumption 

of a velocity-independent potential. 

 



A basic property of Hamilton’s equations is that they preserve 2𝑛-dimensional volumes in phase space. 

This follows from the divergence of 𝑭(𝒙). 

𝜕

𝜕𝒙
⋅ 𝑭 =

𝜕

𝜕𝒑
⋅ (−

𝜕𝐻

𝜕𝒒
) +

𝜕

𝜕𝒒
⋅ (
𝜕𝐻

𝜕𝒑
) = 𝟎 

𝑑

𝑑𝑡
∫ �̃�
𝑆𝑡

𝑑2𝑛�̃� = ∫
𝑑�̃�

𝑑𝑡𝑆𝑡
⋅ 𝑑𝑆 = ∫ 𝐹 ⋅ 𝑑𝑆

𝑆𝑡
= ∫

𝜕

𝜕�̃�
⋅ 𝑭

⏟  
0

𝑑2𝑛�̃�
𝑆𝑡

= 0 

Conservation of volume ⇒ Hamiltonian systems do not have attractors like dissipative systems. 

The incompressibility of phase space volume in Hamiltonian systems is known as Liouville’s theorem. 

The basic property that gives phase-space-preservation is the symplectic properties based on the matrix 𝑺2𝑛. 

  

 

 

 

 

 

 

 

 

For 𝑛 = 1 Liouville’s theorem and the symplectic condition are equvalent. 

For 𝑛 > 1 they are not but the symplectic condition implies volume conservation. 

 The symplectic condition is the more fundamental requirement for Hamiltonian mechanics 

A general 2𝑛 × 2𝑛 matrix A is symplectic if 𝑺2𝑛 = 𝐀
T ⋅ 𝑺2𝑛 ⋅ 𝐀 

Eigenvalues of a symplectic matrix are roots of 𝐷(𝜆) = det(𝐀 − 𝜆𝐈), a polynomial in 𝜆 of degree 2𝑛. 

𝑺2𝑛 = 𝐀
𝐓𝐒2𝑛𝐀 →  𝐀 = 𝐒2𝑛

−1(𝐀𝐓)−1𝐒𝟐𝒏  → 𝐷(𝜆) = det(𝐀−1 + 𝜆𝑰) 

𝐀 and 𝐀−1 have the same eigenvalues and since eigenvalues of  𝐀−1 and 𝐀 are inverses of each other the 

eigenvalues must come in pairs (𝜆, 𝜆−1) and since Lyapunov exponents are obtained by logarithms (ℎ = ln |𝜆|) 

they must also come in pairs ±ℎ. 

  

Take a closed surface 𝛿𝑆(0) in (2𝑛, 2𝑛)-phase space and 

evolve all points according to Hamilton’s equations and 

the volume of the endpoints 𝑆(𝑡) will not change 

Consider three orbits 𝑎, 𝑏, 𝑐 that span an infinitesimal time- 

independent area spanned by vectors (𝛿𝑝, 𝛿𝑞) and (𝛿𝑝′, 𝛿𝑞′): 
𝑑

𝑑𝑡
(𝛿𝑝′ ⋅ 𝛿𝑞 − 𝛿𝑞′ ⋅ 𝛿𝑝) =

𝑑

𝑑𝑡
(𝛿�̃�T ⋅ 𝑆2𝑛 ⋅ 𝛿�̃�′) = 0 

𝑑

𝑑𝑡
(𝛿�̃�T ⋅ 𝑆2𝑛 ⋅ 𝛿�̃�′) = ⋯ = 𝛿�̃�

T ((
𝜕2𝐻

𝜕�̃�𝜕�̃�
)

T

𝑆2𝑛
T 𝑆2𝑛 + 𝑆2𝑛𝑆2𝑛

𝜕2𝐻

𝜕�̃�𝜕�̃�
) 𝛿�̃�′ = 0 

Where 𝑆2𝑛 ⋅ 𝑆2𝑛 = −𝐼2𝑛 , 𝑆2𝑛
T = −𝑆2𝑛 and symmetry of 𝜕2𝐻/𝜕�̃�𝜕�̃� was used. 

∴ The infinitesimal area 𝛿𝐴 is preserved during the flow for a symplectic system. 

 

Parallellogram area: 

 𝛿𝑝′ ⋅ 𝛿𝑞 − 𝛿𝑞′ ⋅ 𝛿𝑝 

𝑝 

𝑞 

𝑡 

Γ1 

Γ2 

Poincaré-Cartans Integral theorem: 

∮(𝑝𝑑𝑞 − 𝐻𝑑𝑡)

Γ1

= ∮(𝑝𝑑𝑞 − 𝐻𝑑𝑡)

Γ2

 

If 𝐻(𝑝, 𝑞) is independent of 𝑡: 

∮ 𝑝𝑑𝑞

Γ1

= ∮ 𝑝𝑑𝑞

Γ2

 

 
        Γ1 ∶ Closed curve in (𝑝, 𝑞, 𝑡)-space 

Γ2 ∶ Any other path encircling trajectories of the tube. 



Another consequence of conservation of phase space volume is Poincaré recurrence theorem. For a time-

independent Hamiltonian 𝐻(𝑝, 𝑞) where all orbits are bounded, if for instance there are no orbits 𝐸 = 𝐻(𝑝, 𝑞) 

with |𝑝| → ∞ or |𝑞| → ∞. Pick any point in phase space and surround it with a ball 𝑅𝜖. If there are points 

which leave the initial ball there will always be some of these which will return to 𝑅𝜖 no matter how small 𝜖. 

The time map 𝓜𝑇(�̃�(𝑡), 𝑡) = �̃�(𝑡 + 𝑇) has as a derivative a matrix 𝜕𝓜𝑇/𝜕�̃� that is a symplectic matrix. 

Two special cases of interest are: 

1. The Hamiltonian is periodic in 𝑡, 𝐻(𝑝, 𝑞, 𝑡) = 𝐻(𝑝, 𝑞, 𝑡 + 𝑇) 

2. The Hamiltonian has no explicit dependence on time, 𝐻(𝑝, 𝑞, 𝑡) = 𝐻(𝑝, 𝑞) 

1. Make 𝑡 a state variable 𝜉,  (𝑝, 𝑞, 𝜉) represents a state in 2𝑛 + 1 dimensions with extra equation 𝑑𝜉\𝑑𝑡 = 1 

 𝜉 is an angle variable replaceable in 𝐻 by 𝜉 = 𝜉 mod 𝑇. 

 Use the surface of section technique from the Poincaré map on surface 𝜉 = 𝑡0 ∈ [0, 𝑇[. 

 𝓜𝑇(�̃�, 𝑡0) = 𝓜𝑇(�̃�, 𝑡0 + 𝑛𝑇)  →  Surface of section map 𝑴(�̃�) = 𝓜𝑇(�̃�, 𝑡0) is symplectic. 

Both 1 and 2 have symplectic maps 𝒙𝑛+1 = 𝑴(�̃�𝑛) with Lyapunov exponents ±ℎ𝑗. 

Integrable systems 

A Hamiltonian with no explicit time dependence 𝐻(𝑝, 𝑞) is symmetric under translation in 𝑡 and the 

Hamiltonian equations imply that 𝑑𝐻/𝑑𝑡 = 0 and 𝐸 = 𝐻(𝑝, 𝑞) is an invariant of the trajectory. These orbits lie 

on a (2𝑛 − 1)-dimensional energy surface 𝐸 = 𝐻(𝑝, 𝑞). 

Every symmetry of 𝐻(𝑝, 𝑞) reduces the dimension one step of the manifold where an orbit can exist. These 

symmetries can be obvious like a translational symmetry in a Cartesian coordinate, that coordinate is absent 

from the Hamiltonian. This gives conserved momentum in the missing coordinate’s direction. Another obvious 

symmetry is rotational invariance that give conserved angular momentum. Other symmetries are less obvious. 

A condition that 𝑓(𝑝, 𝑞) is a constant of motion, connected to some symmetry is that the Poisson bracket of 

𝑓 and 𝐻: [𝑓, 𝐻] equals zero. The Poisson bracket of two functions 𝑔1, 𝑔2 depending on 𝑝 and 𝑞 is defined as: 

[𝑔1, 𝑔2] ≡
𝜕𝑔1
𝜕𝑞
⋅
𝜕𝑔2
𝜕𝑝
−
𝜕𝑔1
𝜕𝑝
⋅
𝜕𝑔2
𝜕𝑞

 

A time-independent Hamiltonian is integrable if it has 𝑛 independent global constants of motion 𝑓1, … , 𝑓𝑛. 

One of them will be the Hamiltonian itself, indexed as number one, 𝑓1(𝑝, 𝑞) = 𝐻(𝑝, 𝑞). 

With 𝑛 independent constants of motion the motion will be restricted to the 𝑛-dimensional surface 𝑓𝑖(𝑝, 𝑞) = 𝐾𝑖 

where 𝑖 = 1,2, … , 𝑛 with [𝑓𝑖, 𝑓𝑗] = 0 when 𝑖 ≠ 𝑗. 

These restrictions give a certain topology for the surface where the orbits live, an 𝑛-dimensional torus after a 

suitable canonical coordinate transformation. Picture shows an orbit on a 2-torus. 

  Phase space can then be viewed as consisting of 𝑛-tori almost 

all of which (in a Lebesgue measure sense) are filled with quasi- 

periodic orbits with 𝑛 frequencies. 

The set of orbits that are periodic have zero Lebesgue measure 

(zero phase space volume) but they are still dense in phase space, 

(arbitrarily near any torus with quasi-periodic orbits). 



To illustrate integrable systems and canonical transformations let’s look at the harmonic oscillator with a 

restoring force proportional to the extension from the equilibrium position: 

𝑚�̈� = −𝑘𝑥 → {
𝑞 = 𝑥
𝑝 = 𝑚�̇�  →  𝐻 =

1

2
(𝑘𝑞2 +

𝑝2

𝑚
)   {

𝑞 =
1

𝑚
√2𝑃 sin𝑄

𝑃 = 𝜇 √2𝑃 cos𝑄

 →  𝐻 = 𝜔𝑃 →  {
𝑄 = 𝜔𝑡 + 𝐶
𝑃 = 𝐷

 

 

A separable system 𝐻(𝒒, 𝒑) = 𝐻1(𝑞1, 𝑝1) + 𝐻2(𝑞2, 𝑝2) + ⋯+ 𝐻(𝑞𝑛, 𝑝𝑛) is integrable. It divides into 

𝑛 integrable subsystems with individual energies 𝐸1, 𝐸2, … , 𝐸𝑛 as constants of motion. 

 

 

 

 

 

 

 

 

 

 

 

These Poincaré sections are typical for systems with a second constant of motion. If there is no extra constant of 

motion there will be no extra restricting surface in phase space and the points can be all over the section with 

chaotic dynamics. This makes the Poincaré a valuable tool for discovering hidden constants of motion.   

This method was used by Hénon and Heiles 

in 1964 with a problem from astronomy 

with a potential 𝑉(𝑥, 𝑦). 

 

𝑉(𝑥, 𝑦) =
1

2
(𝑥2 + 𝑦2 + 2𝑥2𝑦 − 2𝑦3/3) 

               = 𝜌2/2 + 𝜌3 sin3 3𝜃 /3 

Canonical transformation with 𝜇 = (𝑘𝑚)1/4 

𝜔 = ඥ𝑘/𝑚 

𝑃 is a constant of motion 

For 𝑛 = 2:  ൞

𝑄1 = 𝜔1𝑡 + 𝐶1
𝑄2 = 𝜔2𝑡 + 𝐶2
𝑃1 = 𝐷1
𝑃2 = 𝐷2

 

Poincare sections for 

periodic and quasi-periodic orbits 

Trajectory is on a torus with 

angular frequencies 𝜔1 and 𝜔2. 𝜔1/𝜔2 rational 𝜔1/𝜔2 irrational 

 

Equipotential curves 

of the Hénon-Heiles 

potential 𝑉(𝑥, 𝑦). 

For low energies the 

trajectories are restricted to 

closed loops while for 

higher energies there is a 

combination of orbits 

restricted to loops in the 

Poincaré section and orbits 

spreading out all over the 

cross section. 

Poincaré sections of the 

 Hénon-Heiles potential 



The Kolmogorv-Arnold-Moser theorem 

The situation of how ordered and chaotic orbits mix in Hamiltonian systems is handled by the KAM-theorem. 

Kolmogorov formulated it in 1954 and Arnold and Moser proved different versions of it in 1962 and 1963. 

The KAM-theorem deals with integrability. One view could be that integrability is general and that all the 

constants of motion must exist even though they might be hard to find. Another possible view would be that if 

an integrable system 𝐻0(𝒑, 𝒒) is altered by adding a perturbation 𝐻1 with no extra constants of motion, then the 

Hamiltonian 𝐻(𝒑, 𝒒) = 𝐻0(𝒑, 𝒒) + 휀 ⋅ 𝐻1(𝒑, 𝒒) should have no constants of motion except for the total energy 

as soon as 휀 ≠ 0. For small 휀 we should expect well-behaved trajectories to eventually wander off and fill the 

phase space volume allowed by energy conservation. 

The stability of the solar system seems to support the first view while the success of statistical mechanics where 

the ergodic hypothesis is assumed (trajectories fill up phase space volume without discrimination apart from 

energy conservation), seems to support the second view, at least for cases when 𝑛 ≫ 1. The KAM-theorem 

shows that the truth lies somewhere between the two extremes. 

𝐻 = 𝐻0 + 휀𝐻1(𝑝, 𝑞) 

Poincaré showed in 1882 that all constants of motion (except energy) are destroyed when 휀 ≠ 0 but this does 

not mean that all periodic and quasi-periodic motion of 𝐻0 disappear. Exactly to what degree and how these 

motions survive is the subject of the KAM-theorem which is center piece of non-linear dynamics. The theorem 

states that most motion is preserved if 휀 is small enough. 

For 𝑛 = 2 tori whose frequency ratio 𝜔1/𝜔2 are poorly approximated with rational numbers survive when the 

perturbation is added. The easily approximated ratios are destroyed first. 

 

 

The total length of destroyed tori goes to zero as 휀 → 0 and the probability that an arbitrary initial condition 

gives a regular motion goes to one. The first regular tori to be destroyed are those that have 𝜔1/𝜔2 that is close 

to a rational 𝑚/𝑠 with 𝑠 being a small integer. Last to be destroyed are those that have a ratio that is hard to 

approximate with a rational. Close to being rational can be decided by expansion into continued fractions. 

𝜎 = 𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

𝑎3 +⋯

≡ (𝑎0, 𝑎1, 𝑎2, … ) 

 

Large 𝑎𝑖 gives a small relative correction and a long series of small 𝑎𝑖′𝑠 mean a good avoidance of being close 

to a rational number with small denominator. The most irrational number is 𝜔∗ = (0,1,1,1, … ) → 

𝜔∗ =
1

1 +
1

1 +
1

1 +⋯

 →  𝜔∗ =
1

1 + 𝜔∗
 →  𝜔∗ =

√5 − 1

2
= 0.61803…  The golden mean 

Tori with the most irrational frequency ratios are most stable against perturbations. When the golden mean tori 

is destroyed all trajectories will be chaotic and there is hard chaos. 

𝑛 = 2 is a bit special since one torus inside another seal of a region where trajectories are bound to be between 

the bounding tori even if tori inside are destroyed. Let’s look at it and how the KAM-theorem works.  

𝐻0 Integrable 

𝐻1 Non-integrable 

Destroyed tori at a certain 휀 with a total length 𝐿(휀). 

Example: 

𝜋 = (3,7,15,1,292,… ) 

𝜋 ≈ 3 +
1

7 +
1

15 + 1/1

=
355

113
= 3.1415929 



Hyperbolic Elliptic 

𝑞1 

𝑝1 

    𝑠th iterate 

of solid curve 

Phase space is filled with tori inside tori, each torus with periodic and quasi-periodic orbits. Look at fixed point 

in the Poincaré section. The stability properties of the iteration map from one crossing of the Poincaré plane to 

the next crossing is given by two eigenvalues whose sum is zero (preservation of phase space volume). 2 cases: 

1. Two complex conjugate eigenvalues 𝑟𝑒±𝑖𝜙  → elliptic fixed point. 

 Stiff pendulum hanging downwards. 

2. One negative and one positive real eigenvalue ±𝑟 → hyperbolic fixed point. 

 Stiff pendulum hanging upside down. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By considering the motion around the fixed points we see that they 

alternate between elliptic and hyperbolic. Around elliptic fixed points 

there will be new tori with frequency ratios that depend on the distance 

to the fixed point. The whole process repeats over and over again in a self-similar way at different scales.  

A 4-dimensional phase space with a 3-dimensional subspace of 

constant energy and different nested tori inside the subspace with 

different frequency ratios 𝜔1/𝜔2. 

Consider a torus with rational 𝜔1/𝜔2. For a periodic orbit with 

period 𝑠 the 𝑠′𝑡ℎ iterate of he Poincaré map, all points on the circle 

will be fixed. 

If the inner dashed circle has slightly larger ratio 𝜔1/𝜔2 then the 

outer dashed circle has a slightly larger ratio (or vice versa). 

The 𝑠’th iterate of the Poincaré map will move in opposite 

directions on the outer and inner dashed circle. 

When the perturbation 휀𝐻1 is added the rational 𝜔1/𝜔2-circle 

no longer maps to itself but points in the inner circle will still 

move clockwise and outer circle points will map anti-clockwise. 

On the ray there will be one point that goes to neither side and 

stays on the ray. The union of all these points from different rays 

forms the deformed circle. 

The 𝑠’th iterate of this deformed circle will map 

to another closed loop encircling the same area 

(consequence of phase space conservation). 

The area preservation between the two curves 

implies an even number of intersection points. 

(Poincaré-Birkhoff theorem 1935). 

Since te motion of the deformed circle is radial 

the intersection points will be fixed points. 

 



 

 

 

 

 

 

 

 

 

Motion around hyperbolic fixed points give rise to chaotic trajectories while motion around elliptic fixed points 

is regular. This brings a coexistence of order and chaos with fractal distribution across different scales. As 

perturbations of an integrable system grow there will be larger parts of phase space filled with chaotic orbits. 

An application of the KAM-theorem is the distribution of asteroids in the asteroid belt. The 2-body system of as 

asteroid’s motion around the sun is an integrable system but disturbance from Jupiter makes it a non-integrable 

3-body problem. There is the unperturbed frequency of the asteroid motion 𝜔0 and the frequency of the Jupiter 

orbit 𝜔𝐽. A figure of the distribution of frequencies for asteroids in the belt between Mars and Jupiter shows 

gaps in the distribution when 𝜔0/𝜔𝐽 is rational with low denominator just as expected from the KAM-theorem. 

 

 

 

 

 

 

 

 

 

 

Another test of the KAM-theorem is the rings of Saturn with inner satellites as a source of perturbation. Just as 

for the asteroids we could expect gaps in the frequencies for the orbits of pebbles circling Saturn. Frequency is 

coupled to orbital radius so we should expect to see gaps in the rings of Saturn where the orbits are likely to be 

more chaotic and therefore more likely to leave the system. There are gaps, the biggest is the Cassini division. 

Hyperbolic 
Elliptic 

Relative density of asteroids 

𝜔0
𝜔𝐽

 


